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The dynamics of a genetically labeled cell population may be used to infer the laws of cell division in
mammalian tissue. Recently, we showed that in mouse tail skin, where proliferating cells are confined to a
two-dimensional layer, cells proliferate and differentiate according to a simple stochastic model of cell division
involving just one type of proliferating cell that may divide both symmetrically and asymmetrically. Curiously,
these simple rules provide excellent predictions of the cell population dynamics without having to address the
cells’ spatial distribution. Yet, if the spatial behavior of cells is addressed by allowing cells to diffuse at
random, one deduces that density fluctuations destroy tissue confluence, implying some hidden degree of
spatial regulation of cell division. To infer the mechanism of spatial regulation, we consider a two-dimensional
model of cell fate that preserves the overall population dynamics. By identifying the resulting behavior with a
three-species variation of the voter model, we predict that proliferating cells in the basal layer should cluster.
Analysis of empirical correlations of cells stained for proliferation activity confirms that the expected cluster-
ing behavior is indeed seen in nature. As well as explaining how cells maintain a uniform two-dimensional
density, these findings present an interesting experimental example of voter-model statistics in biology.
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I. INTRODUCTION

A major challenge in biology is to determine how prolif-
erating cells behave in developing and adult tissues. To gain
insight into the processes of cancer onset, aging, and wound
healing, biologists have long recognized that the spatial or-
ganization of cells in tissue provides indirect access to the
underlying cell behavior. Some tissues, such as the auditory
hair cells of the inner ear, are arranged into repeating units
containing groups of specialized cells essential for the func-
tion of the tissue �1�. In contrast, in other tissues cells do not
organize into coherent structures that reflect their cooperative
function. Indeed, the arrangement of some cell types appears
random �2�. Inferring the rules of cell behavior in these ap-
parently unstructured tissues appears challenging. One may
ask, therefore, how cell behavior in such tissues is regulated
in the absence of well-defined spatial roles.

In this context, it is interesting to consider the case of
mouse tail skin epidermis, for which the laws governing cell
behavior have recently been resolved. Mammalian epidermis
comprises hair follicles interspersed with interfollicular epi-
dermis �IFE�, which consists of sheets of specialized cells
known as keratinocytes �3�; see Fig. 1�a�. Cells are shed
continually from the epidermal surface, and are replaced by
proliferating cells in the basal layer, whose progeny may
cease proliferating and then migrate through the suprabasal
layers before reaching the epidermal surface. Until recently,
it was widely assumed that adult tissue is maintained by two
different proliferating cell populations. These comprised
long-lived, self-renewing stem cells, which have the poten-
tial to undergo an unlimited number of cell divisions and
which maintain a second population of transit-amplifying
�TA� cells, whose proliferative potential is limited �4�. After
several rounds of division, it was conjectured that TA cells
differentiate, exit the cell cycle, and move out of the basal
layer.

In a recent study by Clayton et al., inducible genetic la-
beling was used to study the mechanism of epidermal main-
tenance by tracking the fate of a representative sample of
cells and their progeny �clones� in normal murine tail epider-
mis �5�. By analyzing the size distribution of such clones
over a period of one year, it was possible to infer that the
epidermis is maintained by just one type of progenitor cell.
According to the revised model of epidermal maintenance,
progenitor cells capable of both symmetric and asymmetric
division give rise to a population of nonproliferating cells,
which then transfer from the basal layer to the suprabasal
layers. More precisely, labeling proliferating cells as type A
and differentiated basal layer cells as type B, the basal layer
cell population is governed by the stochastic nonequilibrium
�Markovian� process

A→
� �A + A , Prob r ,

A + B , Prob 1 − 2r ,

B + B , Prob r ,
�

�1�

B→
�

� ,

involving three adjustable parameters: the overall cell divi-
sion rate �, the proportion of cell divisions that are symmet-
ric, 2r, and the rate of transfer, �, of nonproliferating cells
from the basal to the suprabasal layers. As well as overturn-
ing the accepted paradigm of epidermal homeostasis being
achieved by discrete populations of stem and TA cells, the
model provides a degree of quantitative predictive rigor that
is unusual in the field of cell tissue biology; for example, by
quantifying the division and migration rates ��=1.1 /week,
�=0.31 /week� and the branching ratio �r=0.08�, as shown
in Refs. �5,6�. As a result of its quantitative nature, the model
establishes a platform for investigating the role of different
cellular constituents �such as gene products� in regulating
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cell fate, for example by studying how different genes influ-
ence the model parameters.

It is an interesting fact that process �1� is capable of fitting
a wide range of clone fate data within a “zero-dimensional”
framework, i.e., without having to address the spatial orien-
tation of cells within the basal layer. Yet the observed uni-
formity of cell density implies a degree of regulation beyond
that which can be addressed in the zero-dimensional frame-
work. In particular, when augmented by spatial diffusion, the
proposed model leads to “cluster” formation in the two-
dimensional system, whereupon local cell densities are pre-
dicted to diverge logarithmically �7,8�. In biological terms,
such behavior would correspond to a severe disruption of the
epidermis, with much of the tissue dying away, leaving only
a few isolated and very thick clusters of epidermis. Signifi-
cantly, the observation that labeled families of cells remain
largely cohesive �see, for example, Fig. 1�b��, reveals that
cell mobility must be small, so that such divergences would
be significant within a mammalian lifetime. These diver-
gences cannot be regulated through a local density-
dependent mobility.

Thus, the success of the zero-dimensional fit, despite the
predicted divergence in two dimensions, leaves us with an
interesting challenge that is the focus of the present study:
Can we uncover, from the spatial distribution of basal layer
cells, the mechanism by which cells regulate a uniform cell
density without compromising the integrity of the zero-
dimensional fit, as embodied in process �1�?

In order to identify the underlying rules of cell division
and differentiation, we shall draw upon the results of two
types of experiment. First, we shall revisit the clone fate data
used by Clayton et al., and examine the previously discarded
spatial distribution of labeled basal layer cells for signatures
of underlying regulation. Second, we shall consider the sta-
tistics of the entire population of basal layer cells. In particu-
lar, by immunostaining basal layer cells for markers of cell
proliferation, it is possible to analyze the spatial distribution
of all progenitor cells.

Thus, the aim of this paper is to elucidate how the experi-
mental observations constrain any proposed theory of spatial
behavior in the basal layer. In summary, we shall show that
the dynamics predicted by process �1� are indeed consistent
with the constraint on uniform cell density, provided that cell
division occurs only upon the migration of a nearby type B
�i.e., differentiated� cell into the basal layer. Moreover, we
confirm that the clone fate data are consistent with a re-
stricted degree of cell mobility, whereby cell motion is not
diffusive and random. Instead, differentiated cells only mi-
grate laterally as a response to fluctuations in the local den-
sity. Finally, to test the validity of the proposed spatial
model, we use it to predict that, while maintaining a uniform
total areal cell density, the population of progenitor cells
should cluster over time. By considering the radial correla-
tion function for the spatial distribution of progenitor cells,
we find that this prediction is in good qualitative agreement
with experiment. Quantitatively, the comparison reveals that
the experimental degree of progenitor cell clustering is
slightly higher than that expected for the parameter value of
r=0.08 determined previously through clonal analysis. Al-
though several technical difficulties may challenge the reli-

ability of these quantitative results, we speculate that such
excess clustering may be a signature of spatial regulation of
cell fate during asymmetric division. These results also shed
light on previous observations of clustering of cells undergo-
ing mitosis in the epidermis �9,10�. Such observations have
been interpreted in the biological community to be a signa-
ture of regulation that leads to coordinated cell division. By
contrast, this work shows that the tendency of proliferating
cells �and therefore mitoses� to cluster is in fact consistent
with cells dividing independently and stochastically—
indeed, it is the hallmark of the proposed spatial process.

This paper is organized as follows. In Sec. II A we de-
velop a phenomenological model of cell behavior that incor-
porates the experimental constraint on uniform cell density.
We identify the proposed model as a variation upon the so-
called monomer-monomer model of surface catalysis. We
then analyze this simpler model in Sec. II B, including an
exact solution for the two-point density correlations in the
closely related monomer-monomer model. In Sec. III we test
the uniform-density model against a range of experimental
data, first through a qualitative comparison of the model with
the empirical clone shape data �Sec. III A�, and then by ana-
lyzing the spatial correlations observed for proliferating cells
�Sec. III B�. We conclude with a discussion of cell clustering
in Sec. IV.

FIG. 1. �Color online� �a� Schematic cross section of murine
interfollicular epidermis. Proliferating cells �gray� are confined to
the basal layer �labeled �i��; differentiated cells migrate through the
superbasal layers �ii�, where they flatten into cornified cells, losing
their nuclei and assembling a cornified envelope �green online� �iii�,
eventually becoming shed at the surface. �b� Two examples of typi-
cal clones acquired at a late time point, viewed from the basal layer
surface. Cell nuclei are labeled blue; the hereditary clone marker
�EYFP� appears yellow. Scale bar 20 �m.
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II. A SPATIAL MODEL OF CELL KINETICS

To understand how the experimental observations con-
strain any proposed theory of spatial behavior in the basal
layer, we shall first address the constraint imposed by the
observed uniform cell density. To this end, we postulate that
proliferating cells divide only upon the migration of a nearby
differentiated cell into the suprabasal layers �see Fig. 2�. This
requirement is purely phenomenological, as it ensures a uni-
form density without specifying the mechanism by which it
is implemented. Indeed, a range of regulatory pathways can
be seen to give rise to the same phenomenology, for example
by coupling cell division processes to the local stress �11,12�
or using short-ranged morphogen gradients as well as feed-
back by cell-cell communication. Once this initial constraint
is accounted for in this section, we shall draw upon the fur-
ther observations of clone and basal layer morphology in
order to identify additional rules governing cell behavior.

In general, it is a challenge to couple the division and
migration of basal layer cells while still allowing for some
degree of cell compressibility, whereby a dividing cell may
compensate for the exit of a nonadjacent cell through lateral
motion �see Fig. 2, top�. Several approaches have been used
in the past to overcome this problem. In the context of tissue
development, one may treat the cell tissue as an elastic me-
dium, whereby the local cell density is coupled to the cell
division process through the stress in the surrounding tissue
�11�. Such an approach is capable of accounting for a range
of realistic properties of two-dimensional cell tissue growth,
such as the distribution of cell sizes, as well as cell com-
pressibility. Yet, for the simple problem of steady-state tissue
maintenance, involving no net growth, it is unlikely that the
complexity of the elastic tissue model is required to explain
much of the experimental data. A second approach treats the

two-dimensional basal layer as a “foam” of cells �a Voronoi
tesselation�, for which the steady-state condition may be
used to relate the local cell topology �or more precisely, the
number of nearest neighbors in the basal layer� with the like-
lihood of division or migration. Applied to the problem of
epidermal maintenance, this approach successfully predicts
the steady-state topology of epidermal basal layer cells �13�,
and it identifies that cells with a larger number of neighbors
are more likely to undergo division, whereas cells with a
small number of neighbors are more likely to migrate into
the suprabasal layers. However, it is a challenge to extend
this model to allow for two distinct cell populations that are
exclusively committed to either division or migration, as de-
scribed by process �1�. Yet a third approach draws upon
simulations in which cells are modeled as quasispherical par-
ticles that deform during cell division �14�. However, as this
approach draws upon a wide range of �uncontrolled� param-
eters to describe the cell-cell interactions, it is more complex
than required for this case.

Therefore, in the following it will be sufficient to use a
simpler description of the basal layer, by drawing upon non-
equilibrium lattice models discussed in the recent literature.
In particular, we shall model the basal layer as a lattice in
which each site is occupied by one cell. Cell compressibility
is then modeled by a population of lattice vacancies, which
are created upon cell migration �B→�� and then diffuse
rapidly as compared to the cell kinetic rates ��,��, before
annihilating upon the division of an adjacent cell �see Fig. 2�.
Since this rule-based model is not primarily based on a direct
physical representation of individual cells, it may overlook
certain physical effects. For example, the migration of type B
cells out of the basal layer may be facilitated by mechanical
forces exerted by neighboring cells—a situation that is hard
to represent with a cellular automaton. However, recalling
that the stochastic rules embodied by process �2� have been
experimentally verified, it is reasonable to start by consider-
ing a similar stochastic process in two dimensions. Later, we
shall further justify the use of the lattice model by showing
that the lattice geometry does not affect the qualitative be-
havior of the system �see Sec. II B, paragraph �e��.

Although a significant advantage of the lattice description
of the basal layer is the ease by which it may be simulated, a
range of analytic results are also made accessible by showing
that, in certain limits, the model reduces to a simple two-
component model that belongs to the generalized voter
model universality class �15–17�. The voter model universal-
ity class describes lattice processes that undergo phase sepa-
ration in two dimensions in the absence of surface tension. In
the context of basal layer kinetics, this “phase separation”
corresponds to the clustering of proliferating cells. Curiously,
in the special case r=1 /4, the basal layer lattice model re-
duces to the reaction-limited monomer-monomer model of
surface catalytic reactions, in which the classical voter model
dynamics are augmented by infinite-temperature Kawasaki
exchange dynamics �18�. As well as drawing upon a range of
existing results afforded by these models, we shall derive
here an exact solution for the two-point spatial correlation
function of the monomer-monomer model. These results re-
veal the continuous transition between voter-like and diffu-
sive behavior as the relative rates of symmetric vs asymmet-

FIG. 2. �Color online� Schematic motivating the proposed lattice
model defined in Eq. �2�. Top: A cartoon of cells within the basal
layer, showing the exit of a cell �light gray� through upward migra-
tion into the suprabasal layers, concurrent with the division of a
nearby progenitor cell �dark gray �red��. To ensure continuity of the
basal layer, it is postulated that cells rearrange to maintain a uni-
form cell density �wide arrow�. Bottom: In a simple lattice model
that captures the essence of the steady-state dynamics, the exit of a
cell from the basal layer gives rise to a vacant lattice site �light
gray�, which rapidly diffuses by exchanging position with adjacent
cells �white�. Upon coming into contact with a proliferating cell, the
latter may divide and replace the vacancy with a daughter cell
�striped�.
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ric cell division �or reactant deposition in surface catalysis�
are adjusted.

A. The lattice model

As mentioned above, we are interested in constructing a
spatial model that recovers the behavior of process �1�, and
maintains a uniform cell density. To account for the steric
repulsion of basal layer cells, we will characterize the basal
layer as a two-dimensional lattice, where each site is host to
one of the two cell types, or it remains vacant. When the
vacancy fraction is very low, then such a lattice description
presents a reasonable approximation of the observed near-
uniform arrangement of basal layer cells during normal adult
skin maintenance. Then, to regulate the cell density, progeni-
tor cells �A� are allowed to divide only when neighboring a
site vacancy, while the migration of postmitotic �B� cells
from the basal layer leads to the creation of vacancies which
are free to diffuse in the basal layer through the displacement
of neighboring cells �see Fig. 2�. In summary, denoting a site
vacancy with the symbol �, the lattice model may be written
in terms of the nonequilibrium process

A � →
�� �

AA , Prob r ,

AB , Prob 1/2 − r ,

BA , Prob 1/2 − r ,

BB , Prob r ,
�

B→
�

� , �2�

X � →
�

� X ,

where the site hopping rate � reflects the capacity of vacan-
cies to diffuse within the basal layer, and X is used to denote
either a type A or a type B cell. To gain some initial insight
into the dynamics, and to identify constraints on the param-
eter space, one may consider the steady-state mean-field cell
densities associated with this process. It is straightforward to
show that the mean-field equation for the the vacancy frac-
tion n� is given by

�tn� = �S�2n� + ��1 − � − n�� − ���n�, �3�

where � is the �constant� A-cell fraction, and S is the area per
lattice site, corresponding to the average areal cross section
of a basal layer cell. In the following we shall work in units
of the average cell cross section �S=1�. From here one may
see that the near-uniform cell density in the basal layer
�n��1 and uniformly distributed� constrains us to the re-
gion of parameter space ����, such that any vacancy cre-
ated through the migration of a type B cell out of the basal
layer is rapidly removed upon coming into contact with a
proliferating cell. In this limit, the numerical value of the
parameter �� becomes irrelevant, as may be seen by calcu-
lating the effective local division rate ����n�, which takes
the value �=��1−�� /�, independent of ��. This relationship
between the rate of cell division and migration is identical to
that obtained in process �1� �6�.

Although the uniform vacancy density is a stable fixed
point of the mean-field dynamics �Eq. �3��, one may worry
whether fluctuations about the mean-field solution are ca-
pable of compromising the uniform density of the basal layer
cell lattice in actual manifestations of process �2�. To elimi-
nate this concern, one requires rapid dissipation of density
fluctuations independently of the cell kinetics, from which
we infer that the lattice vacancy population must diffuse rap-
idly compared to the time scale of cell division and upward
migration, viz., ���, as stated earlier. Biologically, this
condition corresponds to the assumption that cells are largely
incompressible, so that local density fluctuations lead to the
rearrangement of cells on a time scale that is significantly
faster than that of cell division �cf. Ref. �11��. In Sec. III A
we shall show that the empirical clone fate data further con-
strain the parameter space to the region ����, whereby the
exit of a type B cell is compensated for by a nearby cell
division.

With these definitions, in the parameter space ������
one may see that the spatial model introduces no new rel-
evant parameters compared to process �1�. That is, the model
behavior depends only on the �known� zero-dimensional pa-
rameters �r,�,��, with the contribution of the new parameters
���,�� entering through the dimensionless ratios � /��, � /�,
and � /��, all of which may be made arbitrarily small. But, as
a precondition on its validity, does the model also reproduce
the observed zero-dimensional basal layer clone size distri-
butions? This is by no means obvious, given the critical �and
therefore delicate� nature of process �1� �6�. For example, a
high density of progenitor cells in the lattice model may lead
to vacancy depletion and jamming, an effect that has no ana-
log in the zero-dimensional system. Therefore, in Sec. III we
shall show, using Monte Carlo simulations, that the proposed
lattice model indeed succeeds in reproducing the empirical
clonal statistics from Ref. �5�. With this basic confidence in
the validity of the model, we now proceed to analyze its
behavior in more detail.

In general, the cell kinetics in process �2� describe a hard-
core nonequilibrium system involving three cell species. Re-
cent progress in the field of nonequilibrium statistical me-
chanics has resulted in several possible formalisms with
which to study such systems �19–21�. However, for the case
at hand, these approaches are unnecessarily complex. Rather
than analyzing the current microscopic model, it is conve-
nient to recast the cell kinetics into a simpler form that de-
scribes the same phenomenology. In particular, for the pa-
rameter space of interest ��������, it is sufficient to
consider a lattice fully occupied by A and B cells, without
addressing the population of lattice vacancies. To see this,
one may see from Eq. �3� that the vacancy dynamics occur
on a fast time scale compared to that of cell migration �1 /��
and division �1 /��. Therefore, referring back to the lattice
process �2�, we may �heuristically� eliminate the vacancy
population by replacing the cell division process �A�
→XY� with a direct cell-cell “reaction” process �AB→XY�,
and by replacing the A-cell division rate �� with the effective
rate ��x�=��n��x�=��1−��x�� /��x�. Here, the local A-cell
fraction ��x� refers to the A-cell number density coarse
grained over the nearby lattice neighborhood. For example,
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denoting the number of type A cells on a lattice site as nx, we
have ��x�=�x�nx�w�	x−x�	� where w�x� is some suitably
chosen normalized envelope function. Within this frame-
work, one may then replace process �2� with the more sim-
plified form

AB→
��x� �

AA , Prob r ,

AB , Prob 1/2 − r ,

BA , Prob 1/2 − r ,

BB , Prob r .
� �4�

The degree to which this heuristic simplification is indeed
justified will be discussed at the end of Sec. II B, together
with a quantitative comparison of the behavior of the exact
and simplified models. It is already clear that process �4�
cannot describe the explicit upward migration of postmitotic
cells from the basal layer. However, in the physically rel-
evant limit ����, eliminating the vacancy population has
no qualitative effect on the statistics of the progenitor cell
compartment, and therefore processes �2� and �4� are ex-
pected to result in the same basal layer phenomenology.

Interestingly, process �4� is closely related to the model of
monomer-monomer surface catalysis �22,23�. In particular,
when the coarse-grained distribution of type A cells is effec-
tively uniform, such that ��x�
const, then one may identify
the symmetric branches of process �4� with the classical
zero-temperature voter model, while the asymmetric division
channel AB→BA describes the Kawaski dynamics of an
infinite-temperature Ising spin model. Later it will become
clear that for the empirical value of r=0.08, the significant
contribution of the latter will justify the approximation of
near-constant �.

This analogy provides access to several known results. In
Ref. �18�, Krapivsky showed that, starting from random ini-
tial conditions, the classical voter model �i.e., with r=1 /2�
will lead to a lattice of N sites becoming completely satu-
rated with either type A or type B cells after a time �t
�N ln N. Moreover, Frachebourg and Krapivski gave an ex-
act solution for the two-point spatial correlations in this case
�22�, from which they inferred that, in the time leading up to
saturation ��t�N ln N�, the different cell types separate into
domains of ever-increasing size, with a typical length scale
growing as L� ln �t in units of the lattice spacing �or aver-
age cell diameter�, and with the density of interfaces cAB
between type A and type B cells dropping as cAB�1 / ln �t.
As the system approaches saturation ��t�N ln N�, one of the
cell types comes to dominate. The classical voter model is an
example of domain growth in the absence of surface tension
�23�. Therefore, the boundaries between domains rich in A
and B cells are completely unstable, leading to strikingly
different and irregular domain morphologies, compared to
the smooth phase-separated shapes resulting from surface-
tension-mediated domain growth.

Qualitatively, the results found for the classical voter
model �r=1 /2� allow us to make several interesting predic-
tions relating to the spatial distribution of A and B cells. In
particular, some degree of clustering of proliferating cells is
to be expected in adult mice, resulting from the growth of
domains rich in progenitor cells. Moreover, the ongoing

growth of the domain size L suggests that larger clusters are
expected in old vs young epidermis. Yet, to make full contact
between process �2� and the empirical data, it becomes nec-
essary to calculate the model properties while allowing for
the relatively low value of r=0.08 found in the experimental
system. Therefore, in the following, we shall extend the
analysis of Frachebourg and Krapivsky to obtain results valid
for arbitrary r. Indeed, with r=1 /4, the following analysis
results in the exact solution to the reaction-limited monomer-
monomer surface catalysis model.

B. Exact solution for two-point correlations

In the following, we will follow the same approach as
taken in Refs. �18,22� for the r=1 /2 case, but we generalize
to allow for arbitrary r and different lattice geometries. For
completeness, we include here aspects of the solution that
were also described in some detail in Ref. �18�, such as the
master equation and the dynamical equations required to de-
fine the problem. We start by identifying type A cells with
state 1 and type B cells with state 0, so that a lattice with site
index i may be described in terms of the Ising variables �
= �ni, ni� �0,1. Referring to Ref. �18�, the master equation
for the probability distribution P�� , t� for the system to oc-
cupy state � at time t is given by

d

dt
P��,t� =

�

2 �
i,e
�r�Ui

�e��F̂i��P�F̂i�,t�

+ Ui
�e��F̂i+e��P�F̂i+e�,t��

+ �1

2
− r�Ui

�e��F̂iF̂i+e��P�F̂iF̂i+e�,t�

− �1

2
+ r�Ui

�e����P��,t�� . �5�

Here, �e represent the nearest-neighbor lattice vectors �	e	
=1�, and Ui

�e����� �0,1 indicates whether the cells at sites i
and i+e are a “reactive” pair, viz.,

Ui
�e���� = ni + ni+e − 2nini+e.

The spin-flip operator is defined by F̂i�= �nj for all j

� i ; 1−ni, so that F̂i� and F̂i+e� correspond to the sym-

metric division channels and F̂iF̂i+e� corresponds to an
asymmetric division in which the location of the type A and
B cells is reversed �viz., AB→BA�.

From here, recalling that �ninj�=��ninjP�� , t�, it is
simple to show that the two-site correlation function evolves
according to the discretized diffusion equation for non-
neighboring sites,

d

dt
�ninj� =

�

2
��i + �j��ninj� , �6�

where �i is the discrete Laplacian operator, defined by �ini
=�e�ni+e−ni�. However, the diffusion equation is modified
for nearest-neighbor correlations, giving
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d

dt
�nini+e� =

�

2
��i + �i+e��nini+e�

+ �1

2
− r���2�nini+e� − �ni+e� − �ni�� , �7�

and the on-site moment is trivially �nini�= �ni�.
Making the simplifying assumption that the initial distri-

bution P�� ,0� is translationally invariant, then the fraction
of type A cells is given by �ni�=�=const, and �ninj� depends
on �i− j� at all times. Therefore, introducing the correlation
function Ci= �njnj+i�, we can rewrite Eqs. �6� and �7� as fol-
lows:

d

dt
Ci = ��iCi − �

e
�i,e�1 − 2r���� − Ce� , �8�

for 	i		1, subject to the constraint C0=�=const. That is, the
correlation function evolves according to a discrete diffusion
equation with sink terms at the nearest-neighbor sites and
with a fixed boundary condition at the origin. The linear
nature of the problem allows one to seek a solution in terms

of the relevant Green’s function, e.g., �̂i
−1�G�ix,iy��t�

=e−4�tIix
�2�t�Iiy

�2�t� for a square lattice i= �ix , iy�. For uncor-
related initial conditions, viz., Ci�t=0�=�2+�i,0��−�2�, one
may write down a general solution in the form

Ci�t� = �2 + �� − �2�Gi�t� + �
j
�

0

t

d
 Jj�
�Gi−j�t − 
� , �9�

where Ji�t� is the source distribution required to both main-
tain C0=const, and also incorporate the sink terms from Eq.
�8�. Thus, Ji�t�=0 for 	i	�1, Je=−�1−2r����−Ce�, and J0
=z���−Ce�, where z is the number of nearest neighbors, and
the initial conditions imply that Ce is the same for all nearest
neighbors. For now we will explicitly consider the square
lattice �z=4�; however, the effect of changing lattice geom-
etry will be discussed near the end of this section. Making
use of Eq. �9�, one may write down a set of self-consistent
equations for the source terms, viz.,

J0�t� = 4��� − �2 − �
0

t

�J0�t − 
�G�0,1��
�

+ Je�t − 
��G�0,0��
� + G�0,2��
� + 2G�1,1��
��� ,

�10�

Je�t� = −
1 − 2r

4
J0�t� , �11�

which, upon taking the Laplace transform j�p�=L�J�t��,
g�p�=L�G�t��, gives the expression for the source term,

j0�p� =
4��� − �2�

p�1 + 4�g�0,1� − �1 − 2r��h�
, �12�

where we have defined h�p�=g�0,0��p�+g�0,2��p�+2g�1,1��p�
for the square lattice.

Note that, in the classical voter model �r=1 /2�, the sink
terms vanish �je=0�, and a single source is located at the
origin. The calculation may then proceed exactly as de-
scribed in Ref. �22�. On the other hand, for the infinite-
temperature Kawasaki dynamics �r=0�, the source and sink
terms create no net correlation �je=−j0 /4�, and they serve
only to maintain the stationary state C0=�, Ci�0=�2.

The discussion so far has been exact. We now turn to the
long-time asymptotic solution of the correlation function, for
which it is sufficient to consider the behavior of j0 and je at
small p �p���. In the following we shall make use of the
following expansions:

lim
p/�→0

g�0,0��p� =
1

4��
ln�32�/p� + O�p ln�p�� ,

and �for the same limit p /�→0�

g�0,0��p� − g�0,1��p� =
1

4�
+ O�p ln�p�� ,

g�0,0��p� − g�1,1��p� =
1

��
+ O�p ln�p�� ,

g�0,0��p� − g�0,2��p� =
1 − 2/�

�
+ O�p ln�p�� .

With these expansions, the source terms take the long-time
asymptotic values

lim
p/�→0

j0�p� =
4���� − �2�

p���1 − 2r� + 2r ln�32�/p��
. �13�

The corresponding long-time behavior is therefore

lim
t�1/�

J0�t� =
4���� − �2�

��1 − 2r� + 2r ln�32�t�
, �14�

giving the expected 1 / ln t decay. Now the effect of Ka-
wasaki dynamics becomes clear: one may see that reducing r
from its maximal value of 1/2 has the opposing effect of
weakening the magnitude of the net source �J0−4Je2r�
while extending the time over which the source decays, tr
��tr=1/2�1/2r. In the trivial limit r=0, the system becomes
stationary as expected, whereas when r=1 /2 one retrieves
the same expression as in Ref. �22�.

Taken together, Eqs. �9�, �11�, and �14� give the solution
for the long-time asymptotic behavior of the two-point cor-
relation function. With a mind toward experiment, as well as
to comparing with the known results for r=1 /2, we now
summarize the features of this solution.

(a) The density of interfaces cAB between A and B cells
drops asymptotically as cAB�1 /2r ln t.

The density of interfaces between adjacent A and B cells,
cAB�t��2��−Ce�t��, is an order parameter used to describe
the transition from an uncorrelated initial state with cAB
=2��−�2� to the jammed absorbing state cAB�t→��=0. For
r=1 /2, it was previously shown that cAB�1 / ln t.

From its definition, we identify the order parameter to be
proportional to the source term, viz., cAB�t�=J0 /2�, so that
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the long-time asymptotic behavior is found from Eq. �14�.
This expression reveals the continuous transition between
Kawasaki dynamics �r=0, cAB=const� and voter dynamics
�r=1 /2, cAB�1 / ln t�. In particular, as t→�, the absorbing-
state phase transition occurs at r=0.

(b) The spatial correlation function Ci�t� decays as a�t�
−b�t�ln	i	 at short distances, and as a Gaussian at long dis-
tances.

Away from the origin, where a continuum description suf-
fices, then the correlation function depends only on the dis-
tance x= 	i	, and all sources appear to be located at the origin,
viz., Ji

�eff.�=�i,0�J0+4Je�. Replacing the discrete problem with
a continuous one simplifies the Green’s function, with
limx�1 Gi�t�→G�x , t�=e−x2/4�t / �4��t� for a square lattice.
As a consequence, the long-time asymptotic correlation
function may be approximated as limt�1/�,x�1 Ci�t�=C�x , t�,
with

C�x,t� = �2 −
2r�� − �2�

��1 − 2r� + 2r ln�32�t�
Ei�−

x2

4�t
� , �15�

where Ei�x�=−�−x
� dt e−t / t is the exponential integral. From

the small-argument expansion of this integral, we find

lim
t�1/�,x2��t

C�x,t� − �2

� − �2 = a�t� − b�t�ln x ,

with

a�t� = 1 −
1 − 2r�� − �e − ln 8�

2r ln�32�t� + ��1 − 2r�
,

b�t�=4r / �2r ln�32�t�+��1−2r��, and �e the Euler constant.
Note that, by definition, the distance x has units of the lattice
spacing, which is set by the average cell diameter in the
context of the epidermal basal layer tissue.

At long times, C�1, t�	Ce�t�, so one may infer that the
correlation function is concave near the origin. Away from
the origin, it is useful to define a correlation length � to
characterize the short-range correlations, viz.,

�−1 � �� − �2�� �C

�x
�

x=1
= b , �16�

corresponding to the typical size of A-cell rich domains
growing as �� ln t. One may see that, when r�0, a variation
in r merely adjusts the correlation length by a constant, in
contrast to its effect on the order parameter cAB. For r=0, the
lattice configuration is random and C�x , t�=�2, correspond-
ing to an “infinite” correlation length.

(c) The time to saturation T of a lattice of N sites is
approximately T�N�ln N+1 / �2r�� /�.

As mentioned earlier, the classical voter model predicts
that any finite-sized system inevitably approaches an absorb-
ing state, in which either the lattice is completely saturated
by type A cells or else they have become extinct. Fortunately,
the time scale T in which the absorbing state is reached is
T��N ln N� /� for r=1 /2, which, for a biological system
with 1 /��1 week and N�1, far exceeds the lifetime of a
mammalian organism.

For arbitrary r, the time scale T may be estimated by
repeating the calculation in Ref. �18�. The saturation condi-
tion is �iCi�T�=N�. Replacing the summation by integration,
�iCi→�0

�xC�x , t�dx, we arrive at the asymptotic relation

lim
�t�1

�
i

Ci − �2

� − �2 

4r�T

��1 − 2r� + 2r ln�32�T�
,

and the result for T follows. Interestingly, this result predicts
that even in a reasonably large system and for finite r, when
N�e�/2r, the time to saturation is insensitive to the value of
r. Indeed, for such systems the crossover to non-voter-like
behavior occurs only at very small values of r�1 / ln N.

(d) The product of the correlation length and interface
density gives a time-invariant characteristic of voter-like
coarsening.

It has been previously noted that, in voter-like coarsening,
the characteristic length scale of domains is inversely propor-
tional to the interface density cAB �16�. An important impli-
cation of this observation is that, at asymptotically long
times, one may identify a time-invariant characteristic of the
correlations, which we define as ����−�2� / �cAB��=2r /�.

To characterize the � constant, one may identify its defi-
nition as the ratio between the domain size � and domain
circumference, as calculated from the number of A-B inter-
faces associated with each domain cAB�2. Thus, the domain
perimeter has a trivial fractal dimension of 1, with � indi-
cating the perimeter roughness, or curvature. Values of �

1 may be associated with cohesive and smooth domains
�i.e., with a large area-to-interface ratio�, whereas systems
with �→0 have highly fragmented, or rough, domains. Not
surprisingly, smaller values of r lead to rougher domains as a
result of the Kawasaki dynamics. Yet one may see that, even
at the maximum value of r=1 /2, the voter model predicts
rough domains ���1 /2�—an observation readily seen in
simulations; see, e.g., Ref. �23�.

With an eye to the empirical analysis in the next section,
let us note that the � constant allows us to characterize static
observations of type A cell correlations, and thus provides a
valuable test of whether a given data set is consistent with
the long-time behavior of process �4�.

(e) The lattice geometry influences only the time scale of
clustering, with higher coordination number corresponding
to a faster time scale.

For lattice geometries with different coordination num-
bers z�4 �and one site per unit cell�, the calculation pro-
ceeds as for a square lattice, but now three modifications
must be made. First, as mentioned above, the central source
term is J0=z���−Ce�, and there are now z sink terms Je at
nearest-neighboring sites. Second, the appropriate Green’s
function now has the �nonseparable� form

Gi�t� =
1

4�2� d2q exp�iq · i − �t�z − �
e

eiq·e�� ,

from which we obtain the general form of the small-p �long-
time� expansion of the Laplace transform limp/�→0 g0�p�
� ln�� / p�+d0 /2� and gi�p�=g0�p�−di /2�, where di are nu-
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merical constants, e.g., de=2 /z. Third, the sum over sink
terms in Eq. �10� is revised to reflect the lattice geometry.
With these three modifications, one finds that the order pa-
rameter cAB takes the general form cAB=2���−�2� / ���1
−2r�+2r ln���t��, where � and � are geometry-dependent
constants. One is led to conclude that the lattice geometry
serves only to rescale the time variable by some constant, t
→�e��1−2r�t. It is interesting to contrast this with the more
significant effect of modifying the branching ratio r, which
instead rescales ln t.

With regard to the experimental system, the apparent in-
sensitivity of the results to details of the lattice geometry
reinforces the validity of a lattice-based description of the
basal layer. Namely, while it is clear that the basal layer is
not a periodic lattice of uniform cell size and coordination
number, it may nonetheless be modeled as such.

Finally, because the average coordination number of z
=6 is expected for the biological system, we have calculated
the order parameter exactly for a hexagonal lattice, giving
��hex�
0.98�, and ��hex�=51.

This completes our theoretical discussion of process �4�,
and of the monomer-monomer surface catalysis model. It
now remains to be seen whether the exact model of cell
division �2� is indeed described by the properties of the ap-
proximate process �4� �with uniform ��. Let us recall that the
latter is a reasonable approximation assuming that the den-
sity of type A cells is approximately uniform. Thus, although
the approximation must fail on the time scale �T�N ln N
associated with the jamming transition, the logarithmically
slow growth of correlations suggests that at shorter times
�t�T� the degree of progenitor cell clustering should be
sufficiently low as to make the analysis self-consistent.

To test whether the model indeed satisfies the expected
behavior, in Fig. 3 we compare the spatial correlation of type
A cells, as given by the properties derived above, with the
results of process �2� as obtained by numerical simulation
using a Gillespie-like algorithm �described below in Sec.
III A�. An example of the cellular automata simulations used
for the comparison is shown in Fig. 4, where the distribution
of type A cells �black� is shown on a hexagonal lattice.
Qualitatively, one may see from this figure that process �2�
does indeed give rise to some clustering. By extracting the
correlation function from such figures, we obtained the quan-
titative comparison shown in Fig. 3. In Fig. 3�a�, we compare
the evolution of the inverse order parameter 1 /cAB against
ln t for the two models. One may see from the linear behav-
ior of the exact model �red online�, that the order parameter
indeed shows the expected 1 / ln t decay. Equally, we may
confirm that the radial correlation function C�x , t� has the
functional form a−b ln x, with parameters �1−a� and b both
proportional to cAB, as demonstrated by plotting �C�x , t�
−�� /cAB in Fig. 3�a� �inset�. Finally, we may confirm that
both models have the same long-time r dependence by plot-
ting � against r in Fig. 3�b�. Here, one may see that indeed
� depends linearly on r.

Yet, although Fig. 3 reveals that processes �2� and �4�
result in the same functional dependence of the correlation
function on r and t, it is striking that the exact model �2�
results in a slower growth in correlations compared to the

simplified model, characterized both by a slower decay of
cAB seen in Fig. 3�a�, and by rougher domains �or lower ��
seen in Fig. 3�b�. How might one explain this change? Re-
ferring to the discussion in Sec. II A, let us recall that the
simplified model is connected to the exact model by relating
the local division rate to the mean-field vacancy density
���x�=��n��x��, with the two models becoming equivalent
when n��x�=const for an arbitrarily small degree of coarse
graining. This condition is satisfied in the limit ���� with
the process A� → �A removed. However, for the physically
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FIG. 3. �Color online� Comparison of the exact basal layer lat-
tice model �2� �red curves� with the simplified model �4� �black�. �a�
The order parameter 1 /cAB is plotted against ln t. The curves cor-
respond to the simplified model with r=1 /2 �dashed black� and r
=1 /4 �dotted�, and to the exact model with r=1 /2 �dashed red� and
r=0.08 �solid curve�. For the simplified model, the analytical ex-
pression for cAB was used. For the exact model, the results were
obtained from numerical simulation on hexagonal lattices of size
N=1024�1024, with �=0.22 and setting �=1. Inset: The correla-
tion function plotted against logarithm of the distance, ln x, evalu-
ated from numerical simulation and Eq. �17�. The time-invariant
ratio ��−C�x , t�� /cAB is plotted at �t=50, 100, 1000 for the classi-
cal voter model �dashed�, and at �t=350, 3500, 7000 for the exact
model with r=1 /2 �solid curves�. Consistent with the expected be-
havior �see Eq. �15��, the curves overlap and are convex near x=1,
becoming linear at x�1. �b� The long-time asymptotic roughness
constant � plotted against r for both models. Data points corre-
spond to the values calculated using Eq. �17� from numerical simu-
lations such as shown in Fig. 4, using the algorithm described in
Sec. III A. Error bars result from fluctuations due to finite-size ef-
fects, as evaluated by considering the random variation in � over
the time of the simulation. The black curve gives the theoretical
value of � for the simplified �monomer� model on a hexagonal
lattice, while the red curve gives the best fit to the numerical results
for the exact model.
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meaningful case ���� one can no longer treat the vacancy
density as uniform, leading to quantitative �but not qualita-
tive� differences in the behavior of the two models. As
shown schematically in Fig. 5, the vacancy population has
the effect of accelerating cell division on the edge of smooth
progenitor cell clusters, as a result of the higher concentra-
tion of nearby postmitotic cells migrating into the superbasal
layers. Conversely, cell division on rough cluster edges is
slowed down. In total, rough A-B interfaces remain stable
over a longer period of time, leading to the observed differ-
ences between the two models.

III. EMPIRICAL ANALYSIS

We are now in a position to turn to the experimental
analysis of the IFE. In order to identify the underlying rules
of cell division and differentiation, one can envision two
types of experiment.

�a� First, one may track the fate of individual cells and
their progeny, and then look for a cell kinetic description
compatible with their observed behavior. Such an approach
was used with considerable success in the definition of the
zero-dimensional process �1� through clonal analysis, and we
shall extend it to the analysis of the spatial process in Sec.
III A.

�b� Second, in Sec. III B we shall consider the statistics of
the entire population of basal layer cells. In particular, by
immunostaining basal layer cells for markers of cell prolif-
eration, it is possible to analyze the spatial distribution of all
progenitor cells within the layer. Then, referring to the theo-
retical discussion in Sec. II, one may look for a signature of
the underlying cell kinetics in the spatial correlation of pro-
liferating cells.

Note that the two types of experiment give access to in-
dependent aspects of cell behavior: The former probes the
temporal evolution of cell lineages, whereas the latter reveals
the static basal layer morphology. As such, the experiments
provide a significant degree of mutual verification of any
proposed theory of cell behavior. Yet even the best of such
experiments leave room for some ambiguity: For example, it
is far from clear what importance should be assigned to the
embryonic development of the IFE in predetermining the
spatial distribution of cells. Moreover, one may in principle
conceive of regulatory pathways that leave no signature on
the spatial distribution of cells, or which may not be distin-
guished from an independent stochastic process. Thus, in the
following we will look for the simplest possible model of
cell behavior that succeeds in capturing the known biological
constraints.

A. Clonal analysis

To begin our analysis of the empirical data, we start by
considering the fate of individual labeled cells and their
progeny, hereafter referred to as clonal fate data. In an ex-
tensive experiment reported elsewhere �5�, the low-
frequency labeling of approximately 1 in 600 basal layer
epidermal cells at a defined time was achieved by a drug-
inducible genetic event, which resulted in expression of the
enhanced yellow fluorescent protein �EYFP� gene in a cohort
of mice. At intervals, the EYFP label was detected by con-
focal microscopy, which enables three-dimensional �3D� im-
aging of entire sheets of epidermis. By analyzing samples of
mouse epidermis at different time points, it was possible to
analyze the fate of labeled basal layer clones at single cell
resolution in vivo for times up to one year post-labeling in
the epidermis �see, for example, Fig. 1�b�� �2,5�.

The distribution of cells within a clone constitutes a valu-
able data set, which one may analyze for signatures of the
underlying rules of cell division. By scoring the total number
of labeled cells n in each clone at progressive time points, it
was possible to access the evolution of the full clone size

FIG. 4. Cellular automaton simulation of process �2�, showing
the distribution of progenitor cells �black hexagons� on a lattice of
N=200�200, and using the experimental branching ratio r=0.08
and progenitor cell fraction �=0.22. The frame shown corresponds
to an evolution time of t=30 /�, where t=0 corresponds to random
initial conditions. White areas are fully occupied by postmitotic
cells.

FIG. 5. �Color online� Schematic demonstrating the variation in
the effective division rate in process �2�, accounting for the quanti-
tative variation in behavior between processes �2� and �4�. The re-
active interface between progenitor cells �light gray �red�� and post-
mitotic cells �dark gray �blue�� is indicated by the thick gray line,
with a faster division rate shown in light gray and slower division
rate shown in dark gray. On the left, a smooth interface results in
faster cell division, as few progenitors on the boundary must com-
pensate for the migration of many postmitotic cells in the bulk. On
the right, the “rough” interface results in a variation between fast
and slow division rates, due to restricted access of vacancies into
the rough interfacial regions. Referring to the discussion at the end
of Sec. II B, this leads to increased stability of rough compared to
smooth interfaces.
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distribution, as given by the probability Pn�0�t� for finding a
clone with n�1 basal layer cells at a time t postlabeling,
shown in Fig. 6�a�. The properties of the size distribution
were used to infer the laws summarized in process �1� �5,6�.
In particular, it was shown that, in the long-time limit
�t�1 /r��, the basal layer clone size distribution conforms to
the scaling form

lim
r�t�1

Pn�0�t� =
�

r�t
exp� �n

r�t
� .

As discussed in Sec. II, we must first establish, for any pro-
posed model of spatial behavior, that the zero-dimensional
clone size distributions are faithfully reproduced.

To this end, we conducted multiple simulations of process
�2� as an asynchronous cellular automaton evolving on a
hexagonal lattice of N=60�60 sites over a period corre-
sponding to T=60 weeks in the experimental system �recall
that �=1.1 /week �5��. At t=0, the lattice was fully occupied
by randomly placed type A and type B cells. A single, ran-
domly chosen, type A cell was assigned a hereditary “label”
at the start of each simulation. In effect, each such simulation

mimics the evolution of one labeled clone, so that repeated
simulations may be used to sample the full clonal statistics,
viz., Monte Carlo sampling. In particular, by tracking the
number of labeled cells as a function of time over 104 such
clone simulations, we could compare the clonal statistics pre-
dicted by process �2� with those expected from the zero-
dimensional process �1�. In keeping with the empirical fit
from the previous section, we used a B -cell migration rate of
�=0.31 /week, and an initial A -cell fraction of �=0.22. The
“fast” rates of cell division and hole diffusion were set to be
��=104 /week and �=200 /week, although the precise values
are unimportant provided that ������, as discussed in
Sec. II. The results are plotted in Fig. 6�a�, where we com-
pare the clone size distribution Pn�0�t� to the empirical data.
One may see that the fit is remarkably good, and within the
current empirical resolution is indistinguishable from the
predictions of the zero-dimensional model �cf. Ref. �6��. In
summary, the fit provides a first validation of process �2� as a
viable model of spatial behavior in the basal layer.

We may now reconsider the clone fate data with a view to
studying spatial structure. Unfortunately, although the clone
size data were stored for all clones, images showing their
spatial structure were retained only for a small number of
clone samples. Therefore we are not in a position to conduct
a comprehensive quantitative analysis of clone shape evolu-
tion. Nevertheless, a striking qualitative feature of clones is
that they remain largely cohesive, as shown in the example
in Fig. 1�b�. �Indeed, without this property the very enter-
prise of clonal analysis would have proved difficult.� There-
fore, to challenge the validity of the proposed lattice model
of cell division, we test, using additional Monte Carlo simu-
lations, the ability of the model to produce cohesive clones
over the one-year time period of the experiment. Represen-
tative results are shown in Fig. 6 for large clones at 60 weeks
postlabeling. When ������, clones were seen to remain
largely cohesive throughout the period of the simulation. We
may therefore conclude that, at least with respect to the ex-
isting clonal fate data, process �2� presents a reasonable phe-
nomenological description of the spatial behavior of basal
layer cells. In particular, the cohesive nature of clones may
be completely explained in terms of an independent stochas-
tic process, with no evidence for further forms of regulation.

Yet to what extent is the observation of cohesiveness sen-
sitive to modifications of the basal layer lattice model? To
test the degree to which cohesiveness constrains the model,
we allowed for a degree of cell mobility within the basal
layer, by introducing the additional exchange process AB
→BA with rate ���. The exchange process is a reasonable
candidate for cell behavior, motivated by the observation that
keratinocytes in culture are highly motile, which leads one to
postulate whether cells in vivo are capable of independent
lateral migration in the basal layer. We found that, for any
non-small value of � �i.e., ����, the progeny of labeled
clones rapidly dispersed, as shown in Fig. 7. We are led to
conclude that epidermal cells in vivo move only in response
to a local density gradient resulting from cell division and
migration. Moreover, a second investigation in which the
hard-core mobility � was made larger than �� �and keeping
�=0� again led to a loss of clone cohesiveness. We are there-
fore led to conclude that, within the framework of the non-
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FIG. 6. �Color online� �a� Comparison of the empirical clone
size distribution �data points� to predictions of process �2� �solid
curves�, as obtained from Monte Carlo simulations of 104 labeled
clones. The distributions are plotted in terms of the probability Pk�t�
for a clone to have between 2k−1+1 and 2k basal layer cells at time
t after labeling, normalized to include only clones with two or more
cells in the basal layer �k	1�. The empirical data are reproduced
from Ref. �5�. �b� Examples of the basal layer structure of several
large late-stage clones evolving according to process �2�, starting
from a uniform random distribution of unlabeled cells, with one
single type-A cell labeled at t=0. Light and dark gray �red and blue
online� hexagons indicate sites occupied by type A and B cells,
respectively. White areas are populated by unlabeled cells. Each
frame corresponds to the progeny of one initially labeled cell.
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interacting lattice model, progenitor cells undergo division
rather than lateral migration as a response to a local drop in
density.

In conclusion, the observation of clone cohesiveness im-
poses a severe constraint on cell behavior, which allows us to
rule out several variations of the basic lattice model. Yet, at
least qualitatively, there is no clear evidence either for or
against additional regulation of cell division in the clone
shape data. So to what extent is the lattice model truly ca-
pable of shedding new light on the mechanism of cell fate
regulation? To do better, we must look for quantitative data
for comparison. Fortunately, such data can be found in the
readily available spatial distribution of progenitor cells.

B. Correlation analysis

As mentioned earlier, an intriguing feature of the non-
interacting lattice model is the prediction of clustering of
proliferating cells. How does this prediction compare with
experiment? Before we turn to considering new results for
mouse tail skin, it is interesting to first consider results pre-
sented in past work. In a detailed study of proliferating cells
in hamster cheek epidermis by Gibbs and Casarett �9�, a
subset of progenitor cells were labeled using a radioactive
marker for DNA synthesis �S phase�. By measuring the num-
ber of unlabeled cells separating consecutive labeled ones in
one-dimensional basal layer cross sections, it was possible to
access the full radial distribution for the separation between
adjacent cells undergoing S-phase synthesis. Remarkably,
while the large-interval distribution decayed exponentially as
expected for an uncorrelated random distribution, the prob-

ability of finding a nearby cell in S phase was significantly
higher at short distances, indicating that proliferating cells
were clustered. A second study addressing the distribution of
S-phase cells in mouse esophagus also revealed identical
qualitative results �10�.

Not surprisingly, in the absence of the intuition afforded
by the voter model, such clustering has been interpreted in
the biological community as evidence of an underlying regu-
latory process, which leads to the synchronous division of
nearby cells �10�. On the other hand, an independent analysis
of clone fate data in Ref. �6� indicates that cell division
within clones occurs independently. It is therefore satisfying
to note that the tendency of proliferating cells to cluster is in
fact consistent with independent division—indeed it is the
hallmark of voter-model dynamics.

To extract the spatial correlation between progenitor cells
in mouse tail skin, we analyzed confocal micrographs of
basal layer cross sections of IFE that were stained for the
proliferation marker Ki67, such as the one shown in Fig.
8�a�. Cells bright in Ki67 are designated as type A �progeni-
tor� cells, whereas Ki67-dull cells were designated as type B
�i.e., differentiated� cells, with no capacity to divide. Using
image analysis software �IMAGEJ�, the coordinates of each
Ki67-bright cell were extracted. This data allows a full sta-
tistical analysis of the spatial distribution of progenitor cells.
In particular, we shall focus on the radial correlation function

C�x� =� 1

A
�

0

2� d�

2�
�

A

dx�n�x��n„x� + x�x,��…� , �17�

where A denotes the area of each sample, n�x� denotes the
areal density of proliferating cells at position x, and the an-
gular brackets �·� indicate averaging over all basal layer
samples.

Using Eq. �17�, the aim of the correlation analysis is to
assess whether basal layer progenitor cells in adult mice do
indeed cluster, and if so, to assess whether the experimental
correlation function is consistent with the predictions made
in Sec. II B. In principle, one may look to the data for sig-
natures of the expected spatial dependence C�x , t��a�t�
−b�t�ln x �for a given value of t�, as well as for evidence of
increased clustering with time, viz., cAB�t��1 / �2r ln t�. For
the latter, however, the temporal analysis is difficult to
implement due to the sensitivity required to resolve the
1 / ln t decrease in cAB at long times. In particular, the pre-
dicted increase in clustering over a biologically relevant pe-
riod of �t�101–102 cell cycles corresponds to a decrease in
cAB of �10%, whereas variations in the efficiency of Ki67
labeling between different mice introduce systematic errors
of the same order. Therefore, in the following we shall re-
strict ourselves to the quantitative analysis of tissue samples
taken from a single adult mouse �aged 8 weeks�.

To incorporate the empirical coordinates of proliferating
cells into Eq. �17�, we replace the product n�x��n�x�+x� with
the sum �i,j��x�−Ri�f�x�+x−R j�, where ��x� is the Dirac
delta function, �Ri is the set of all progenitor cell coordi-
nates, and f�X� is a two-dimensional Gaussian envelope with
width w. With this substitution, the integrals in Eq. �17� can

FIG. 7. �Color online� Loss of cohesiveness with increasing
relative hopping rate � /�� shown through examples of late-stage
clone simulations. Light and dark gray �red and blue online� hexa-
gons indicate sites occupied by type A and B cells, respectively,
from the same clone. White areas are populated by unlabelled cells.
The simulations used the same parameter set as described above for
the clones in Fig. 6, but using the parameter values �=20 /week and
200 /week with ��=10 000 /week for the top left and top right
clones, respectively; �=200 /week and 2000 /week with ��
=200 /week for the bottom left and bottom right clones. For the
latter, which is clearly unphysical, the scale has been reduced two-
fold to demonstrate the wide dispersion of labeled cells. The ex-
amples demonstrate that clones are cohesive when � /���1, but
dispersive otherwise.
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be solved exactly. Then, explicitly accounting for the aver-
aging procedure over samples of variable size, we obtain the
expression

C�x� =� �

2�w2NA�x��i=1

NA

�
j�i

NA�x�

exp�−
x2 + Rij

2

2w2 �I0�−
xRij

w2 �� .

�18�

Here, the sum i,j over all progenitor cell coordinates arises
from the empirical expression for n�x��n�x�+x� given above,
and we have defined Rij �	Ri−R j	. The prefactor, exponen-
tial factor, and modified Bessel function �I0� result from solv-
ing the integrals in Eq. �17�. The total number of progenitor
cells found in each sample is NA, and NA�x� is the number of
progenitor cells at a distance x or more from the sample
edges. As defined, the correlation function avoids errors re-
sulting from edge effects by averaging each sample over the
NA�x� progenitor cells that are unaffected by the finite sample
size. To correctly average over different samples, as indi-
cated by �·�, the sample results are weighted by NA�x�, e.g.,
C�1+2��x�= �NA

�1��x�C�1��x�+NA
�2��x�C�2��x�� / �NA

�1��x�+NA
�2��x��.

Making use of Eq. �18�, the experimental correlation be-
tween progenitor cells was averaged over ten samples of ap-
proximately 30�30 cells each; see Fig. 8�b�. Remarkably,
the data indeed show a significant degree of progenitor cell
clustering, in good agreement with the linear decay in ln x
expected from Eq. �15�. In real terms, one may infer from the
value of the nearest-neighbor correlation C�1� that each pro-
genitor cell is in contact, on average, with approximately two
adjacent progenitor cells, compared to 1.3 progenitor cells
expected for an uncorrelated random distribution �at �
=0.22�.

For a more careful test of the theory, one may extract
from Fig. 8�b� the order parameter cAB=0.29�0.02, and the
correlation length of �=14.7�0.7 cells, from which we find
the empirical roughness constant �=0.04�0.01. Repeating
the analysis with samples taken from different mice results in
the same value of cAB, but with values of � in the range �
=0.02–0.04. Referring to Fig. 3�b�, where the empirical
value of � is compared to the model predictions �dashed�,
we see that the model indeed recovers the correct order of
magnitude of the roughness constant. Qualitatively, then, it
appears that the model is consistent with the observed clus-
tering. Let us emphasize that this fit requires no additional
parameters, and is purely a result of mapping the cell kinet-
ics onto a lattice.

IV. DISCUSSION AND CONCLUSIONS

To summarize, we have demonstrated that the zero-
dimensional model of cell division is consistent with the
maintenance of the basal layer at uniform density, and we
have shown that the size distribution and qualitative shapes
of labeled clones are consistent with a simple stochastic
model of cell division and differentiation on a two-
dimensional lattice. These results explain why the recently
discovered zero-dimensional model of cell behavior gives
such an excellent fit to the clone fate data despite taking no

account of additional regulatory pathways. Significantly, de-
spite the many forms of cell fate regulation known to exist in
development and adult tissue, the only extracellular regula-
tion required to understand the existing observations of clone
fate in normal IFE is steric, viz., the coupling of cell division
to the local cell density.

Beyond the success of the model in explaining the ob-
served clone fate data, we have also identified that the degree
of progenitor cell clustering, as measured by Ki67 staining,
is in good qualitative agreement with the predictions of the
spatial process. In particular, there are two features that allow
us to characterize the spatial process. First, the empirical
roughness constant �=0.04�0.01 has the expected order of
magnitude predicted by the model �Fig. 3�b��, and, second,
the correlation function is in excellent agreement with the
expected decay form a�t�−b�t�ln x �at fixed t�, as seen in Fig.
8.

Taken together, these results have two important implica-
tions for future investigations of epidermal cell fate regula-
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FIG. 8. �Color online� �a� Confocal micrograph of whole
mounted mouse tail skin IFE, showing the two-dimensional basal
layer immunostained for the nuclear marker DAPI �dark gray
�blue��, and the proliferation marker Ki67 �light gray �red��. The
area surrounding the stained nuclei is occupied by unstained cell
cytoplasm �black�. �b� The empirical radial correlation function
C�x�, as defined in Eq. �18�. Data points show results obtained by
analysis of the Ki67-stained epidermal whole mounts exemplified in
�a�, taken from a mouse aged 8 weeks; the dashed line shows the fit
to the analytical form of the correlation function predicted by pro-
cess �2�, C�x , t�=a�t�−�−1�t�ln x, with x in units of the average cell
diameter �see Eqs. �15� and �16��, and where the single time point t
is fixed by the age of the mouse and by initial conditions �see
discussion in Sec. IV�. From the fitted slope one may extract the
correlation length ��t� defined in Eq. �16�, giving �=14.7 cell
diameters.
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tion. First, by demonstrating that the zero-dimensional pro-
cess �1� is indeed capable of maintaining a uniform total
basal layer cell density, the spatial process consolidates the
proposed stochastic model as a robust platform for investi-
gating biochemical constituents in future work. For example,
by over- or underexpressing specific genes and then studying
the resulting change in the empirical parameters �r,�,��, one
may attempt to identify the role of each constituent in regu-
lating cell behavior. Second, the model introduces a set of
spatial measures �such as the roughness constant �� that
yield further information in such investigations of the bio-
chemistry, beyond that which may be obtained through em-
pirical evaluation of the zero-dimensional parameters alone.

Beyond the qualitative features of the dynamics, one may
ask whether there are any implications to the quantitative
features of the correlation analysis. Unfortunately, as men-
tioned earlier, variations in the efficiency of Ki67 labeling
prevent us from generating the comprehensive statistics nec-
essary to accurately quantify the universal values of the sys-
tem parameters. Nevertheless, taken at face value, it appears
that the empirical value of � obtained from the sample ana-
lyzed in Sec. III B is consistent with process �2� only when
one imposes a branching ratio r=0.19�0.04, which differs
significantly from the value of r=0.08 established through
clonal analysis �see Fig. 3�b��. This value is further consis-
tent with the observed AB interface concentration of cAB
=0.29 and the correlation length of �=14.7 cells, which cor-
respond to a long evolution time of �t�104–106 for r
=0.08, but a realistic biological time scale of �t�101–102

for r=0.19.
Although it is possible that the discrepancy in the inferred

value of r results from errors in progenitor cell classification
as discussed in Sec. III B, the difference is large enough to
call into question the reliability of the correlation analysis.
Beyond the issue of progenitor cell labeling efficiency, there
is also the more basic question of whether Ki67 is at all
effective as a marker of progenitor cells. In particular, it is
widely accepted that Ki67 is a marker of cell growth as well
as proliferation, which may imply that differentiated cells
remain Ki67-bright for some time after division, or that pro-
genitor cells may fail to continuously express Ki67 �24,25�.

However, assuming that Ki67 is indeed a faulty marker, it
becomes difficult to explain why the analysis nevertheless
results in an excellent fit to the a�t�−b�t�ln x decay form of
correlations �at fixed t�. We may also challenge our assump-
tion of using “random initial conditions” to model steady-
state maintenance. If initial conditions are at all relevant,
then the observed clustering may be a signature of develop-
ment and growth processes that are no longer active in the
adult system. To test the importance of initial conditions, we
have compared the order parameter cAB between adult mice
aged 8 and 60 weeks �corresponding to young and old adult
mice�. If clustering is inherent in the initial conditions, then
one would expect cAB to grow over time as the memory of
initial conditions erodes. On the other hand, as mentioned in
Sec. III B, steady-state maintenance results in �10% change
in the order parameter over this time period, which would be
undetectable given the systematic errors in Ki67 labeling.
Indeed, we find no change from cAB=0.29�0.02 at 60
weeks, so there is no indication that the observed clustering
is a signature of tissue development.

Finally, it is interesting to speculate whether additional
forms of regulation may be capable of reconciling the higher
value of r=0.19 found for the spatial process with the lower
value of r=0.08 found from the zero-dimensional analysis.
We propose a simple revision of the model that is capable of
reconciling the spatial and zero-dimensional data: Referring
to process �2�, if the two channels of asymmetric division in
process �2� occur with different probabilities �viz., PA�→AB
� PA�→BA�1 /2−r, and PA�→AB+ PA�→BA=1−2r�, then the
effective value of the branching ratio r is effectively renor-
malized in the spatial process, while leaving it unchanged in
zero dimensions. To reconcile the two empirical values of r,
it is simple to show that one requires PA�→AB
7PA�→BA

�1−2r� /8. Thus, one might speculate that the increase in
clustering is associated with a spatial asymmetry in daughter
cell fate during asymmetric division. It would be an interest-
ing challenge to devise an experiment with which to test this
asymmetry.
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